Yung-Hsien Wu (巫勇賢)
The microelectronics sector has spurred a global information revolution through the persistent drive to make semiconductor devices faster, smaller and cheaper. For the past four decades, the minimum feature size employed to fabricate integrated circuits have exponentially decreased and the corresponding enhancement in transistor performance is also achieved. The catalyst at the heart of this progress has been a relentless pursuit of advances characterized by the famous “Moore’s Law” observation.
1. Kuen-Yi Chen, Pin-Hsuan Chen, and Yung-Hsien Wu*, “Excellent Reliability of Ferroelectric HfZrOx Free from Wake-Up and Fatigue Effects by NH3 Plasma Treatment,” in Symp. on VLSI Tech., Kyoto, Japan, 2017.
2. Yung-Shao Shen, Kuen-Yi Chen, Po-Chun Chen, Teng-Chuan Chen and Yung-Hsien Wu*, “Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer,” Scientific Reports, vol. 7, p. 43659, 2017.
3. Yu-Hsun Chen, Chin-Yu Chen, Cheng-Lin Cho, Ching-Heng Hsieh, Yung-Chun Wu, Kuei-Shu Chang-Liao and Yung-Hsien Wu*, “Enhanced Sub 20-nm FinFET Performance by Stacked Gate Dielectric With Less Oxygen Vacancies Featuring Higher Current Drive Capability and Superior Reliability,” in IEEE International Electron Devices Meeting (IEDM), Washington, USA, 2015.
4. Yung-Chin Fang, Kuen-Yi Chen, Ching-Heng Hsieh, Chang-Chia Su, and Yung-Hsien Wu*, “N‑MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility,” ACS Appl. Mater. Interfaces, vol. 7, no. 48, pp. 26374-26380, 2015.
5. Hsin-Chueh Chu, Yung-Shao Shen, Ching-Heng Hsieh, Jia-Hong Huang, and Yung-Hsien Wu*, “Low-Voltage Operation of ZrO2 -Gated n-Type Thin-Film Transistors Based on a Channel Formed by Hybrid Phases of SnO and SnO2,” ACS Appl. Mater. Interfaces, vol. 7, no. 28, pp. 15129-15137, 2015.
6. Chergn-En Sun, Chin-Yu Chen, Ka-Lip Chu, Yung-Shao Shen, Chia-Chun Lin, and Yung-Hsien Wu*, “ZnO/NiO Diode-Based Charge-Trapping Layer for Flash Memory Featuring Low-Voltage Operation,” ACS Appl. Mater. Interfaces, vol. 7, no. 12, pp. 6383-6390, 2015.